CRAN

AhoCorasickTrie 0.1.0

Fast Searching for Multiple Keywords in Multiple Texts

Released Jul 29, 2016 by Matt Chambers

This package can be loaded by Renjin but all tests failed.

Dependencies

Rcpp

Aho-Corasick is an optimal algorithm for finding many keywords in a text. It can locate all matches in a text in O(N+M) time; i.e., the time needed scales linearly with the number of keywords (N) and the size of the text (M). Compare this to the naive approach which takes O(N*M) time to loop through each pattern and scan for it in the text. This implementation builds the trie (the generic name of the data structure) and runs the search in a single function call. If you want to search multiple texts with the same trie, the function will take a list or vector of texts and return a list of matches to each text. By default, all 128 ASCII characters are allowed in both the keywords and the text. A more efficient trie is possible if the alphabet size can be reduced. For example, DNA sequences use at most 19 distinct characters and usually only 4; protein sequences use at most 26 distinct characters and usually only 20. UTF-8 (Unicode) matching is not currently supported.

Installation

Maven

This package can be included as a dependency from a Java or Scala project by including the following your project's pom.xml file. Read more about embedding Renjin in JVM-based projects.

<dependencies>
  <dependency>
    <groupId>org.renjin.cran</groupId>
    <artifactId>AhoCorasickTrie</artifactId>
    <version>0.1.0-b21</version>
  </dependency>
</dependencies>
<repositories>
  <repository>
    <id>bedatadriven</id>
    <name>bedatadriven public repo</name>
    <url>https://nexus.bedatadriven.com/content/groups/public/</url>
  </repository>
</repositories>

View build log

Renjin CLI

If you're using Renjin from the command line, you load this library by invoking:

library('org.renjin.cran:AhoCorasickTrie')

Test Results

This package was last tested against Renjin 0.8.2561 on Dec 22, 2017.

Source

R
C++

View GitHub Mirror

Release History