CRAN
DCEM 0.0.2
Clustering for Multivariate and Univariate Data Using Expectation Maximization Algorithm
Released Apr 5, 2019 by Sharma Parichit
Dependencies
MASS 7.3-51.4 mvtnorm 1.0-10 matrixcalc 1.0-3
Implements the Expectation Maximisation (EM) algorithm for clustering finite gaussian mixture models for both multivariate and univariate datasets. The initialization is done by randomly selecting the samples from the dataset as the mean of the Gaussian(s). This version improves the parameter initialization on big datasets. The algorithm returns a set of Gaussian parameters-posterior probabilities, mean, co-variance matrices (multivariate data)/standard-deviation (for univariate datasets) and priors. Reference: Hasan Kurban, Mark Jenne, Mehmet M. Dalkilic (2016)
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>DCEM</artifactId> <version>0.0.2-b1</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:DCEM')
Test Results
This package was last tested against Renjin 0.9.2725 on May 4, 2019.