CRAN
GLDreg 1.0.7
Fit GLD Regression Model and GLD Quantile Regression Model to Empirical Data
Released Feb 28, 2017 by Steve Su
Dependencies
Owing to the rich shapes of Generalised Lambda Distributions (GLDs), GLD standard/quantile regression is a competitive flexible model compared to standard/quantile regression. The proposed method has some major advantages: 1) it provides a reference line which is very robust to outliers with the attractive property of zero mean residuals and 2) it gives a unified, elegant quantile regression model from the reference line with smooth regression coefficients across different quantiles. The goodness of fit of the proposed model can be assessed via QQ plots and Kolmogorov-Smirnov tests and data driven smooth test, to ensure the appropriateness of the statistical inference under consideration. Statistical distributions of coefficients of the GLD regression line are obtained using simulation, and interval estimates are obtained directly from simulated data.
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>GLDreg</artifactId> <version>1.0.7-b16</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:GLDreg')
Test Results
This package was last tested against Renjin 0.9.2644 on Jun 2, 2018.