CRAN
GSparO 1.0
Group Sparse Optimization
Released Feb 20, 2017 by Yaohua Hu
Dependencies
Approaches a group sparse solution of an underdetermined linear system. It implements the proximal gradient algorithm to solve a lower regularization model of group sparse learning. For details, please refer to the paper "Y. Hu, C. Li, K. Meng, J. Qin and X. Yang. Group sparse optimization via l_{p,q} regularization. Journal of Machine Learning Research, to appear, 2017".
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>GSparO</artifactId> <version>1.0-b16</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:GSparO')
Test Results
This package was last tested against Renjin 0.9.2644 on Jun 2, 2018.