CRAN
TVsMiss 0.1.1
Variable Selection for Missing Data
Released Apr 5, 2018 by Yang Yang
Dependencies
Use a regularization likelihood method to achieve variable selection purpose. Likelihood can be worked with penalty lasso, smoothly clipped absolute deviations (SCAD), and minimax concave penalty (MCP). Tuning parameter selection techniques include cross validation (CV), Bayesian information criterion (BIC) (low and high), stability of variable selection (sVS), stability of BIC (sBIC), and stability of estimation (sEST). More details see Jiwei Zhao, Yang Yang, and Yang Ning (2018)
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>TVsMiss</artifactId> <version>0.1.1-b4</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:TVsMiss')
Test Results
This package was last tested against Renjin 0.9.2644 on Jun 2, 2018.