CRAN
decon 1.2-4
Deconvolution Estimation in Measurement Error Models
Released Apr 17, 2013 by Xiao-Feng Wang
This package contains a collection of functions to deal with nonparametric measurement error problems using deconvolution kernel methods. We focus two measurement error models in the package: (1) an additive measurement error model, where the goal is to estimate the density or distribution function from contaminated data; (2) nonparametric regression model with errors-in-variables. The R functions allow the measurement errors to be either homoscedastic or heteroscedastic. To make the deconvolution estimators computationally more efficient in R, we adapt the "Fast Fourier Transform" (FFT) algorithm for density estimation with error-free data to the deconvolution kernel estimation. Several methods for the selection of the data-driven smoothing parameter are also provided in the package. See details in: Wang, X.F. and Wang, B. (2011). Deconvolution estimation in measurement error models: The R package decon. Journal of Statistical Software, 39(10), 1-24.
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>decon</artifactId> <version>1.2-4-b295</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:decon')
Test Results
This package was last tested against Renjin 0.9.2644 on Jun 1, 2018.