CRAN

decon 1.2-4

Deconvolution Estimation in Measurement Error Models

Released Apr 17, 2013 by Xiao-Feng Wang

This package can be loaded by Renjin but 4 out 8 tests failed.

This package contains a collection of functions to deal with nonparametric measurement error problems using deconvolution kernel methods. We focus two measurement error models in the package: (1) an additive measurement error model, where the goal is to estimate the density or distribution function from contaminated data; (2) nonparametric regression model with errors-in-variables. The R functions allow the measurement errors to be either homoscedastic or heteroscedastic. To make the deconvolution estimators computationally more efficient in R, we adapt the "Fast Fourier Transform" (FFT) algorithm for density estimation with error-free data to the deconvolution kernel estimation. Several methods for the selection of the data-driven smoothing parameter are also provided in the package. See details in: Wang, X.F. and Wang, B. (2011). Deconvolution estimation in measurement error models: The R package decon. Journal of Statistical Software, 39(10), 1-24.

Installation

Maven

This package can be included as a dependency from a Java or Scala project by including the following your project's pom.xml file. Read more about embedding Renjin in JVM-based projects.

<dependencies>
  <dependency>
    <groupId>org.renjin.cran</groupId>
    <artifactId>decon</artifactId>
    <version>1.2-4-b295</version>
  </dependency>
</dependencies>
<repositories>
  <repository>
    <id>bedatadriven</id>
    <name>bedatadriven public repo</name>
    <url>https://nexus.bedatadriven.com/content/groups/public/</url>
  </repository>
</repositories>

View build log

Renjin CLI

If you're using Renjin from the command line, you load this library by invoking:

library('org.renjin.cran:decon')

Test Results

This package was last tested against Renjin 0.9.2644 on Jun 1, 2018.

Source

R
C
Fortran

View GitHub Mirror

Release History