CRAN
deepNN 0.3
Deep Learning
Released Mar 8, 2019 by Benjamin Taylor
Dependencies
Implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout. Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue)
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>deepNN</artifactId> <version>0.3-b1</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:deepNN')
Test Results
This package was last tested against Renjin 0.9.2724 on Mar 10, 2019.
- L1_regularisation-examples
- L2_regularisation-examples
- NNgrad_test-examples
- NNpredict-examples
- Qloss-examples
- ReLU-examples
- hyptan-examples
- ident-examples
- logistic-examples
- nbiaspar-examples
- net_test
- network-examples
- nnetpar-examples
- no_regularisation-examples
- smoothReLU-examples
- softmax-examples
- train-examples
- wQloss-examples