CRAN

diceR 0.5.2

Diverse Cluster Ensemble in R

Released Mar 8, 2019 by Derek Chiu

This package cannot yet be used with Renjin it depends on other packages which are not available: dplyr 0.8.0.1, NMF 0.21.0, purrr 0.3.1, tidyr 0.8.3, tibble 2.0.1, caret 6.0-81, quantable 0.3.6, Hmisc 4.2-0, and ggplot2 3.1.0

Dependencies

tidyr 0.8.3 Hmisc 4.2-0 dplyr 0.8.0.1 caret 6.0-81 ggplot2 3.1.0 purrr 0.3.1 NMF 0.21.0 tibble 2.0.1 quantable 0.3.6 assertthat 0.2.0 clValid 0.6-6 magrittr 1.5 sigclust 1.1.0 e1071 1.7-0.1 blockcluster 4.3.2 apcluster 1.4.7 abind 1.4-3 clusterCrit 1.2.8 kohonen 3.0.8 klaR 0.6-14 stringr 1.4.0 infotheo 1.2.0 Rcpp clue 0.3-57 class 7.3-15 RColorBrewer 1.1-2 cluster 2.0.7-1 progress 1.2.0 flux 0.3-0 kernlab 0.9-27 cli 1.0.1 mclust 5.4.2 dbscan 1.1-3 Rtsne 0.15 RankAggreg 0.6.5 gplots 3.0.1.1

Performs cluster analysis using an ensemble clustering framework, Chiu & Talhouk (2018) . Results from a diverse set of algorithms are pooled together using methods such as majority voting, K-Modes, LinkCluE, and CSPA. There are options to compare cluster assignments across algorithms using internal and external indices, visualizations such as heatmaps, and significance testing for the existence of clusters.