CRAN
mboost 2.9-1
Model-Based Boosting
Released Aug 22, 2018 by Benjamin Hofner
Dependencies
nnls 1.4 survival 2.42-6 Matrix 1.2-14 quadprog 1.5-5 lattice 0.20-35 partykit 1.2-2 stabs 0.6-3
Functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalised) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data.
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>mboost</artifactId> <version>2.9-1-b2</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:mboost')
Test Results
This package was last tested against Renjin 0.9.2687 on Aug 25, 2018.
Source
Release History
- 2.9-1
- 2.9-0
- 2.8-1
- 2.8-0
- 2.7-0
- 2.6-0
- 2.5-0
- 2.4-2
- 2.4-1
- 2.4-0
- 2.3-0
- 2.2-3
- 2.2-2
- 2.2-1
- 2.2-0
- 2.1-3
- 2.1-2
- 2.1-1
- 2.1-0
- 2.0-12
- 2.0-11
- 2.0-10
- 2.0-9
- 2.0-8
- 2.0-7
- 2.0-6
- 2.0-5
- 2.0-4
- 2.0-3
- 2.0-2
- 2.0-1
- 2.0-0
- 1.1-4
- 1.1-3
- 1.1-2
- 1.1-1
- 1.1-0
- 1.0-6
- 1.0-5
- 1.0-4
- 1.0-3
- 1.0-2
- 1.0-1
- 1.0-0
- 0.5-8
- 0.5-7
- 0.5-6
- 0.5-5
- 0.5-4
- 0.5-3
- 0.5-2
- 0.5-1
- 0.5-0
- 0.4-17
- 0.4-15
- 0.4-14
- 0.4-13
- 0.4-12
- 0.4-11
- 0.4-10
- 0.4-9
- 0.4-8
- 0.4-7
- 0.4-6