CRAN
miRNAss 1.4
Genome-Wide Discovery of Pre-miRNAs with few Labeled Examples
Released Jan 3, 2018 by Cristian Yones
Dependencies
Rcpp RSpectra 0.13-1 CORElearn 1.52.1 Matrix 1.2-14
Machine learning method specifically designed for pre-miRNA prediction. It takes advantage of unlabeled sequences to improve the prediction rates even when there are just a few positive examples, when the negative examples are unreliable or are not good representatives of its class. Furthermore, the method can automatically search for negative examples if the user is unable to provide them. MiRNAss can find a good boundary to divide the pre-miRNAs from other groups of sequences; it automatically optimizes the threshold that defines the classes boundaries, and thus, it is robust to high class imbalance. Each step of the method is scalable and can handle large volumes of data.
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>miRNAss</artifactId> <version>1.4-b9</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:miRNAss')
Test Results
This package was last tested against Renjin 0.9.2689 on Aug 27, 2018.