CRAN
mixEMM 1.0
A Mixed-Effects Model for Analyzing Cluster-Level Non-Ignorable Missing Data
Released Jun 8, 2017 by Lin S. Chen
Contains functions for estimating a mixed-effects model for clustered data (or batch-processed data) with cluster-level (or batch- level) missing values in the outcome, i.e., the outcomes of some clusters are either all observed or missing altogether. The model is developed for analyzing incomplete data from labeling-based quantitative proteomics experiments but is not limited to this type of data. We used an expectation conditional maximization (ECM) algorithm for model estimation. The cluster-level missingness may depend on the average value of the outcome in the cluster (missing not at random).
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>mixEMM</artifactId> <version>1.0-b13</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:mixEMM')
Test Results
This package was last tested against Renjin 0.9.2644 on Jun 2, 2018.