CRAN
mixdir 0.2.0
Cluster High Dimensional Categorical Datasets
Released Mar 11, 2019 by Constantin Ahlmann-Eltze
Dependencies
Scalable Bayesian clustering of categorical datasets. The package implements a hierarchical Dirichlet (Process) mixture of multinomial distributions. It is thus a probabilistic latent class model (LCM) and can be used to reduce the dimensionality of hierarchical data and cluster individuals into latent classes. It can automatically infer an appropriate number of latent classes or find k classes, as defined by the user. The model is based on a paper by Dunson and Xing (2009)
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>mixdir</artifactId> <version>0.2.0-b1</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:mixdir')
Test Results
This package was last tested against Renjin 0.9.2724 on Mar 13, 2019.
- Prediction.finding_the_defining_answers_works
- Prediction.finding_the_most_representative_answers_works
- Prediction.finding_the_most_typical_answers_works
- Prediction.predict_class_works
- Prediction.predict_mixdir_works
- Prediction.predict_mixdir_works_with_DP
- Rcpp_Implementations.expec_log_xij_works
- Rcpp_Implementations.zeta_update_works
- Rcpp_Implementations.zeta_update_works_for_dp
- Variational_Inference.VI_can_handle_missign_values
- Variational_Inference.VI_can_handle_more_complex_models
- Variational_Inference.VI_can_handle_the_mushroom_dataset
- Variational_Inference.VI_works_for_simple_models
- Variational_Inference_DP.VI_DP_can_handle_missing_values
- Variational_Inference_DP.VI_DP_works_for_simple_models
- Variational_Inference_DP.mixdir_can_handle_missing_values_as_category
- Variational_Inference_DP.mixdir_repetitions_selects_the_best_run
- find_predictive_features-examples
- find_typical_features-examples
- mixdir-examples
- mushroom-examples
- predict.mixdir-examples
- testthat