CRAN
multilevelMatching 1.0.0
Propensity Score Matching and Subclassification in Observational Studies with Multi-Level Treatments
Released May 8, 2019 by Brian G. Barkley
Dependencies
nnet 7.3-12 MASS 7.3-51.4 boot 1.3-22 Matching 4.9-6
Implements methods to estimate causal effects from observational studies when there are 2+ distinct levels of treatment (i.e., "multilevel treatment") using matching estimators, as introduced in Yang et al. (2016)
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>multilevelMatching</artifactId> <version>1.0.0-b1</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:multilevelMatching')
Test Results
This package was last tested against Renjin 0.9.2726 on May 10, 2019.
- calcKMVarFactor-examples
- estimateTrtModel-examples
- multiMatch-examples
- multilevelGPSMatch-examples
- multilevelGPSStratification-examples
- multilevelMatchX-examples
- multilevelMatching-examples
- nameContrast-examples
- nameMu-examples
- prepareData-examples
- print.multiMatch-examples
- summary.multiMatch-examples
- testthat
- toy_dataset_results.multiMatch()_returns_same_as_multilevelMatchX()_on_one_covariate
- toy_dataset_results.multilevelGPSMatch()_one_X_and_trimming_returns_same_output_as_v0_1
- toy_dataset_results.multilevelGPSMatch()_with_one_X,_no_tri,_returns_same_output_as_v0_1
- toy_dataset_results.multilevelMatchX()_on_one_X_returns_same_output_as_v0_1_E1
- toy_dataset_results.multilevelMatchX()_on_one_X_returns_same_output_as_v0_1_E2
- toy_dataset_results.multilevelMatchX()_with_one-column_matrix_X_returns_same_output_as_v0_1