CRAN
ordinalNet 2.6
Penalized Ordinal Regression
Released Feb 21, 2019 by Michael Wurm
Fits ordinal regression models with elastic net penalty. Supported model families include cumulative probability, stopping ratio, continuation ratio, and adjacent category. These families are a subset of vector glm's which belong to a model class we call the elementwise link multinomial-ordinal (ELMO) class. Each family in this class links a vector of covariates to a vector of class probabilities. Each of these families has a parallel form, which is appropriate for ordinal response data, as well as a nonparallel form that is appropriate for an unordered categorical response, or as a more flexible model for ordinal data. The parallel model has a single set of coefficients, whereas the nonparallel model has a set of coefficients for each response category except the baseline category. It is also possible to fit a model with both parallel and nonparallel terms, which we call the semi-parallel model. The semi-parallel model has the flexibility of the nonparallel model, but the elastic net penalty shrinks it toward the parallel model. For details, refer to Wurm, Hanlon, and Rathouz (2017)
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>ordinalNet</artifactId> <version>2.6-b1</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:ordinalNet')
Test Results
This package was last tested against Renjin 0.9.2724 on Feb 23, 2019.
- Compare_ordinalNet_results_against_other_packages_.Binary_logistic_regression_with_positive_constraints_matches_penalized
- Compare_ordinalNet_results_against_other_packages_.Cumulative_logit_ridge_matches_rms::lrm
- Compare_ordinalNet_results_against_other_packages_.Elastic_net_binary_logistic_regression_matches_glmnet_and_penalized
- Compare_ordinalNet_results_against_other_packages_.Elastic_net_binary_logistic_regression_with_penalty_factors_matches_glmnet
- Compare_ordinalNet_results_against_other_packages_.Elastic_net_sratio_matches_glmnetcr::glmnet_cr
- Compare_ordinalNet_results_against_other_packages_.Unpenalized_acat_logit/loge_matches_VGAM::vglm
- Compare_ordinalNet_results_against_other_packages_.Unpenalized_acat_logit/loge_matches_VGAM::vglm_-_multiple_response_values_per_observation
- Compare_ordinalNet_results_against_other_packages_.Unpenalized_cratio_cloglog_matches_VGAM::vglm
- Compare_ordinalNet_results_against_other_packages_.Unpenalized_cumulative_logit_matches_MASS::polr
- Compare_ordinalNet_results_against_other_packages_.Unpenalized_cumulative_logit_matches_VGAM::vglm
- Compare_ordinalNet_results_against_other_packages_.Unpenalized_sratio_probit_matches_VGAM::vglm
- Test_link_functions_.acat_logit_link_is_correct__E1
- Test_link_functions_.acat_logit_link_is_correct__E2
- Test_link_functions_.cratio_probit_link_is_correct__E1
- Test_link_functions_.cratio_probit_link_is_correct__E2
- Test_link_functions_.cumulative_cauchit_link_is_correct__E1
- Test_link_functions_.cumulative_cauchit_link_is_correct__E2
- Test_link_functions_.sratio_cloglog_link_is_correct__E1
- Test_link_functions_.sratio_cloglog_link_is_correct__E2
- coef.ordinalNet-examples
- ordinalNet-examples
- plot.ordinalNetTune-examples
- predict.ordinalNet-examples
- print.ordinalNet-examples
- print.ordinalNetCV-examples
- print.ordinalNetTune-examples
- summary.ordinalNet-examples
- summary.ordinalNetCV-examples
- summary.ordinalNetTune-examples
- testthat