CRAN
varbin 0.2.1
Optimal Binning of Continuous and Categorical Variables
Released Oct 12, 2018 by Daniel Safai
Dependencies
Tool for easy and efficient discretization of continuous and categorical data. The package calculates the most optimal binning of a given explanatory variable with respect to a user-specified target variable. The purpose is to assign a unique Weight-of-Evidence value to each of the calculated binpoints in order to recode the original variable. The package allows users to impose certain restrictions on the functional form on the resulting binning while maximizing the overall information value in the original data. The package is well suited for logistic scoring models where input variables may be subject to restrictions such as linearity by e.g. regulatory authorities. An excellent source describing in detail the development of scorecards, and the role of Weight-of-Evidence coding in credit scoring is (Siddiqi 2006, ISBN: 978–0-471–75451–0). The package utilizes the discrete nature of decision trees and Isotonic Regression to accommodate the trade-off between flexible functional forms and maximum information value.
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>varbin</artifactId> <version>0.2.1-b1</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:varbin')
Test Results
This package was last tested against Renjin 0.9.2692 on Oct 21, 2018.