CRAN

varrank 0.2

Heuristics Tools Based on Mutual Information for Variable Ranking

Released Dec 20, 2018 by Gilles Kratzer

This package is available for Renjin and there are no known compatibility issues.

Dependencies

FNN 1.1.2.2

A computational toolbox of heuristics approaches for performing variable ranking and feature selection based on mutual information well adapted for multivariate system epidemiology datasets. The core function is a general implementation of the minimum redundancy maximum relevance model. R. Battiti (1994) . Continuous variables are discretized using a large choice of rule. Variables ranking can be learned with a sequential forward/backward search algorithm. The two main problems that can be addressed by this package is the selection of the most representative variable within a group of variables of interest (i.e. dimension reduction) and variable ranking with respect to a set of features of interest.

Installation

Maven

This package can be included as a dependency from a Java or Scala project by including the following your project's pom.xml file. Read more about embedding Renjin in JVM-based projects.

<dependencies>
  <dependency>
    <groupId>org.renjin.cran</groupId>
    <artifactId>varrank</artifactId>
    <version>0.2-b1</version>
  </dependency>
</dependencies>
<repositories>
  <repository>
    <id>bedatadriven</id>
    <name>bedatadriven public repo</name>
    <url>https://nexus.bedatadriven.com/content/groups/public/</url>
  </repository>
</repositories>

View build log

Renjin CLI

If you're using Renjin from the command line, you load this library by invoking:

library('org.renjin.cran:varrank')

Test Results

This package was last tested against Renjin 0.9.2716 on Dec 22, 2018.

Source

R

View GitHub Mirror

Release History