CRAN
vbsr 0.0.5
Variational Bayes Spike Regression Regularized Linear Models
Released Jun 5, 2014 by Benjamin Logsdon
Efficient algorithm for solving ultra-sparse regularized regression models using a variational Bayes algorithm with a spike (l0) prior. Algorithm is solved on a path, with coordinate updates, and is capable of generating very sparse models. There are very general model diagnostics for controling type-1 error included in this package.
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>vbsr</artifactId> <version>0.0.5-b323</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:vbsr')
Test Results
This package was last tested against Renjin 0.9.2644 on Jun 1, 2018.