CRAN
LogicForest 2.1.0
Logic Forest
Released Sep 19, 2014 by Bethany Wolf
Dependencies
CircStats 0.2-4 LogicReg 1.5.9 gtools 3.5.0 plotrix 3.7-2
Two classification ensemble methods based on logic regression models. LogForest uses a bagging approach to construct an ensemble of logic regression models. LBoost uses a combination of boosting and cross-validation to construct an ensemble of logic regression models. Both methods are used for classification of binary responses based on binary predictors and for identification of important variables and variable interactions predictive of a binary outcome.
Installation
Maven
This package can be included as a dependency from a Java or Scala project by including
the following your project's pom.xml
file.
Read more
about embedding Renjin in JVM-based projects.
<dependencies> <dependency> <groupId>org.renjin.cran</groupId> <artifactId>LogicForest</artifactId> <version>2.1.0-b39</version> </dependency> </dependencies> <repositories> <repository> <id>bedatadriven</id> <name>bedatadriven public repo</name> <url>https://nexus.bedatadriven.com/content/groups/public/</url> </repository> </repositories>
Renjin CLI
If you're using Renjin from the command line, you load this library by invoking:
library('org.renjin.cran:LogicForest')
Test Results
This package was last tested against Renjin 0.9.2644 on Jun 2, 2018.
- BoostVimp.plot-examples
- LBoost-examples
- LBoost.fit-examples
- LF.data-examples
- LF.testdata-examples
- logforest-examples
- logforest.fit-examples
- persistence.plot-examples
- predict.LBoost-examples
- predict.logforest-examples
- print.LBoost-examples
- print.LFprediction-examples
- print.logforest-examples
- submatch.plot-examples
- vimp.plot-examples